Monday, 21.05.2012

08:30 - 09:15 Room Brüssel - Welcome Session - Chair: Ralf Moos

09:15 - 10:00 Room Brüssel - Plenary Session - Chair: Giorgio Sberveglieri

	09:15 - 10:00 Room Brüssel - Plenary Session - Chair: Giorgio Sberveglieri Tessi Shigemori (President of New Cosmos Co., JP) - Gas sensors - status and future trends for safety applications				
10:00 - 10:30 Coffee					
Room Mailand High Temperature Gas Sensors I Chair: Prabir Dutta	Room München 1 Biosensors I Chair: Hiroaki Shinohara	Room Brüssel Metal Oxide-based Gas Sensors I Chair: Stephane Evoy	Room München 2 Sensor Arrays Chair: Julian W. Gardner	Room Athen Transistor-based Sensors Chair: Anita Lloyd-Spetz	
10:30	10:30	10:30	10:30	10:30	
1.1.1 Invited Sensors for Fossil Energy Applications in Harsh Environments	substrate	1.3.1 Suppression of the NO ₂ interference by chromium addition in WO ₃ -based ammonia sensors. Investigation of the sensing pathways and their relationship with the structural		1.5.1 Quantitative evaluation of nanoelectrochemical properties of thin film transistor based chemical sensors	
Robert R. Romanosky, NETL National Energy Technology Laboratory, Morgantown, USA	YT. Lin, Chang Gung University, Taoyuan, Taiwan	properties M. Epifani, Consiglio Nazionale delle Ricerche–Istituto per la	S. Semancik, National Institute of Standards and Technology, Gaithersburg, USA	G. Whitfield, MIT, Department of Materials Science and Engineering, Cambridge, USA	
		Microeletronica ed I Microsistemi (CNR-IMM), Lecce, Italy			
	10:50 1.2.2	10:50 1.3.2	10:50 1.4.2	10:50 1.5.2	
		Oxygen deficient V ₂ O ₅ nanorods for gas sensing	Development of a quartz crystal microbalance sensor array for discrimination of black tea	Sensing with dual-gated silicon nanowire field-effect transistors	
11:00 1.1.2 Preliminary study on catalytic combustion-type sensor for diesel particulate matter detection	RI. Stefan-van Staden, National Institute of Research for Electrochemistry and Condensed Matter, Bucharest, Romania	Z. Zhang, Tsinghua University, Beijing, China	P. Sharma, Jadavpur University, Kolkata, India	M. Wipf, University of Basel, Basel, Switzerland	
Y. Teraoka, Kyushu University, Fukuoka, Japan	11:10 1.2.3 Invited	11:10 1.3.3	11:10 1.4.3	11:10 1.5.3	
11:20	Nanomaterials-based Biosensors Arben Merkoçi, Institut Català de Nanotecnologia,	1.3.3 A bio-inspired structure: conversing CdS to CdO for gassensing detection of acetone and diethyl ether J. Liu, University of Science and Technology of China, Hefei,	The EMD based IMF analysis of gas sensor dynamic signals G. Wei, Shandong Institute of Business and Technology, Yantai, China	1.5.3 Environmental hardness of Pt-Ti-O gate Si-MISFET hydrogen gas sensors from siloxane, humidity, and radiation	
$1.1.3 \\ \mbox{Al-doped TiO}_2 \mbox{ semiconductor gas sensor for NO}_2 \mbox{-detection} \\ \mbox{at elevated temperatures}$		China	ranta, Cimia	T. Usagawa, Central Research Laboratory, Hitachi, Ltd., Japan	
B. Saruhan-Brings, German Aerospace Center, Cologne,		11:30	11:30	11:30	
Germany		1.3.4 Flammable gas sensing of flame-spray-made metal-loaded semiconducting metal oxides thick films	1.4.4 Analysis of industrial and domestic gases by means of electronic nose	1.5.4 Influence of a changing gate bias on the sensing properties of SIC field effect gas sensors	
11:40 1.1.4 SiC-based MIS gas sensor for CO detection in very high water vapor environments	11:40 1.2.4 Gas-assisted focused ion beam fabrication of gold nanoelectrode arrays in electron-beam evaporated alumina films for biosensing applications	S. Phanichphant, Chiang Mai University, Chiang Mai, Thailand	D. Haridas, University of Delhi, New Delhi, India	C. Bur, Saarland University, Saarbrücken, Germany	
O. Casals Guillen, University of Barcelona, Barcelona, Spain	and the state of stat	11:50 1.3.5	11:50 1.4.5	11:50 1.5.5	
		1.3.5 Induction mechanism in undoped and antimony doped SnO ₂ based FSP gas sensors	1.4.5 Electronic Nose: different metal oxide modified well- aligned ZnO nanowire arrays for highly sensitive and selective gas detection	Room temperature benzene gas detection using gated lateral BJT with assembled solvatochromic dye	
12:00 1.1.5 Detection of coke deposits on a fixed-bed catalyst by a contactless microwave method: first measurements	12:00 1.2.5 Optimization of Spirulina biofilm for in-situ heavy metals detection with microfluidic-acoustic sensor and AFM	J. Rebholz, Tübingen University, Tübingen, Germany	W. Zhou, University of New Orleans, New Orleans, USA	H. Yuan, Kyungpook National University, Daegu, Korea	
D. Rauch, University of Bayreuth, Bayreuth, Germany	N. Tekaya, Université de Bordeaux, Talence, France	12:10 1.3.6 Alcohol sensing properties of rare earth doped In ₂ O ₃ hollow spheres	1.4.6 Microsensors for Mars trace analyte detection in a simulated Martian environment	12:10 1.5.6 Construction of a photovoltaic glucose sensor applying a metal-insulator-silicon structure in combination with ultrathin polypyrrole-glucose oxidase film	
		T. Zhang, Beijing University of Chemical Technology, Beijing, China	K. Benkstein, National Institute of Standards and Technology, Gaithersburg, USA	J. Wang, Zhejiang University, Hangzhou, China	

12:30 - 13:30 Lunch

		Monday, 21.05.2012		
Room Mailand	Room München 1	Room Brüssel	Room München 2	Room Athen
High Temperature Gas Sensors II	Biosensors II (DNA, SPR)	Metal Oxide-based Gas Sensors II	Resonant Sensors I	IR and Raman-based Sensors
Chair: Holger Fritze	Chair: Arben Merkoçi	Chair: Yasuhiro Shimizu	Chair: Roland Pohle	Chair: Jürgen Wöllenstein
13:30	13:30	13:30	13:30	13:30
2.1.1 Invited	2.2.1	2.3.1	2.4.1	2.5.1
Developing Strategies for Improving Selectivity and	DNA electrophoresis through micropores manufactured by	Xylene sensor using double-layered thin film and Ni-	Mesoporous TiO ₂ sensitive films for Love wave humidity	Towards quantitative Raman spectroscopy by tuning the
Sensitivity of Harsh Environment Electrochemical Gas	laser ablation	deposited porous alumina	detection: origins of stress release induced by sorption	sensitivity of nanopillar SERS substrates
Sensors.				
	M.S. Perez, Grupo MEMS, Buenos Aires, Argentina	K. Hara, Tokyo Denki University, Tokyo, Japan	A. Tetelin, University of Bordeaux, Bordeaux, France	M. Stenbæk Schmidt, Technical University of Denmark,
Prabir Dutta, The Ohio State University, Columbus, USA				Kgs. Lyngby, Denmark
	13:50	13:50	13:50	13:50
	2.2.2	2.3.2	2.4.2	2.5.2
	Detection of DNA sequence based on proton reduction catalyzed by deposition of platinum-complexes	Photo-assisted aromatic VOC sensing by a p-NiO:Li/n-ZnO transparent heterojunction sensor element	Single-particle mass detection with micro-/nanocantilevers based sensors	arrays
	catalyzed by deposition of platinum-complexes	transparent neterojunction sensor element	baseu serisors	arrays
14:00	T. Yasukawa, University of Hyogo, Hyogo, Japan	Y. Nakamura, The University of Tokyo, Tokyo, Japan	I. Stachiv, Academia Sinica at Taipei, Taipei City, Taiwan	D. Cialla, Friedrich-Schiller-University Jena, Jena, Germany
2.1.2	7,8,7,7,8,7		,	, , , , , , , , , , , , , , , , , , , ,
Electrochemical hydrogen sensor for aluminum melts				
C Saharanda Hairanaita of Combaides Combaides HIV				
C. Schwandt, University of Cambridge, Cambridge, UK	14:10	14:10	14:10	14:10
	2.2.3 Invited	2.3.3	2.4.3	2.5.3
	Novel cell-based biosensing with 2D-SPR imager	H ₂ sensing properties of diode-type sensors fabricated with	Structural factors influencing the volatile sensitivity of	Investigations on a MO _x gas sensor as an infrared source
		anodized TiO ₂ films equipped with polymer coated Pd-Pt	polymer-coated piezoelectric micromechanical resonators	for an IR-based gas sensing system
14:20	Hiroaki Shinohara, University of Toyama, Toyama, Japan	electrodes		
2.1.3			D. Karabacak, IMEC, Eindhoven, The Netherlands	K. Kühn, Saarland University, Saarbrücken, Germany
Novel hydrogen probe for Al melt		G. Yamamoto, Nagasaki University, Nagasaki, Japan		
7. 18. 1				
C. Park, KAIST, Daejon, Korea				
		14:30	14:30	14:30
		2.3.4	2.4.4	2.5.4
		2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and	2.4.4 Quartz crystal microbalance sensor for organic vapor	2.5.4 Reliable online-prediction of characteristic process
		2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-	2.5.4
14:40	14:40	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and	2.4.4 Quartz crystal microbalance sensor for organic vapor	2.5.4 Reliable online-prediction of characteristic process parameters by FTNIR spectroscopic analysis
2.1.4 Invited	2.2.4	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects I. Hennemann, University Giessen, Giessen, Germany	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-	2.5.4 Reliable online-prediction of characteristic process
=	2.2.4 Graphene based fiber optic surface plasmon resonance for	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects I. Hennemann, University Giessen, Giessen, Germany	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-inorganic hybrids	2.5.4 Reliable online-prediction of characteristic process parameters by FTNIR spectroscopic analysis
2.1.4 Invited Automotive Exhaust Gas Sensing - Current Trends	2.2.4	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects I. Hennemann, University Giessen, Giessen, Germany	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-inorganic hybrids	2.5.4 Reliable online-prediction of characteristic process parameters by FTNIR spectroscopic analysis
2.1.4 Invited	2.2.4 Graphene based fiber optic surface plasmon resonance for biochemical sensor applications	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects I. Hennemann, University Giessen, Giessen, Germany	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-inorganic hybrids	2.5.4 Reliable online-prediction of characteristic process parameters by FTNIR spectroscopic analysis
2.1.4 Invited Automotive Exhaust Gas Sensing - Current Trends	2.2.4 Graphene based fiber optic surface plasmon resonance for	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects J. Hennemann, University Giessen, Giessen, Germany 14:50 2.3.5 Invited	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-inorganic hybrids J. Xu, Shanghai University, Shanghai, China	2.5.4 Reliable online-prediction of characteristic process parameters by FTNIR spectroscopic analysis W. Summerer, RECENDT GmbH, Linz, Austria 14:50
2.1.4 Invited Automotive Exhaust Gas Sensing - Current Trends	2.2.4 Graphene based fiber optic surface plasmon resonance for biochemical sensor applications	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects J. Hennemann, University Giessen, Giessen, Germany 14:50	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-inorganic hybrids J. Xu, Shanghai University, Shanghai, China 14:50 2.4.5 Silicon cantilever resonators integrated with portable	2.5.4 Reliable online-prediction of characteristic process parameters by FTNIR spectroscopic analysis W. Summerer, RECENDT GmbH, Linz, Austria 14:50 2.5.5 Microimmersion lens LEDs for portable photoacoustic
2.1.4 Invited Automotive Exhaust Gas Sensing - Current Trends	2.2.4 Graphene based fiber optic surface plasmon resonance for biochemical sensor applications	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects J. Hennemann, University Giessen, Giessen, Germany 14:50 2.3.5 Invited Large-Scale Integration of Nanomechanical Sensors	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-inorganic hybrids J. Xu, Shanghai University, Shanghai, China 14:50 2.4.5 Silicon cantilever resonators integrated with portable electrostatic samplers for sensing and characterizing	2.5.4 Reliable online-prediction of characteristic process parameters by FTNIR spectroscopic analysis W. Summerer, RECENDT GmbH, Linz, Austria 14:50
2.1.4 Invited Automotive Exhaust Gas Sensing - Current Trends	2.2.4 Graphene based fiber optic surface plasmon resonance for biochemical sensor applications J. A. Kim, Sungkyunkwan University, Suwon, Korea	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects J. Hennemann, University Giessen, Giessen, Germany 14:50 2.3.5 Invited	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-inorganic hybrids J. Xu, Shanghai University, Shanghai, China 14:50 2.4.5 Silicon cantilever resonators integrated with portable	2.5.4 Reliable online-prediction of characteristic process parameters by FTNIR spectroscopic analysis W. Summerer, RECENDT GmbH, Linz, Austria 14:50 2.5.5 Microimmersion lens LEDs for portable photoacoustic methane sensors
2.1.4 Invited Automotive Exhaust Gas Sensing - Current Trends	2.2.4 Graphene based fiber optic surface plasmon resonance for biochemical sensor applications	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects J. Hennemann, University Giessen, Giessen, Germany 14:50 2.3.5 Invited Large-Scale Integration of Nanomechanical Sensors	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-inorganic hybrids J. Xu, Shanghai University, Shanghai, China 14:50 2.4.5 Silicon cantilever resonators integrated with portable electrostatic samplers for sensing and characterizing engineered nanoparticles in workplace air	2.5.4 Reliable online-prediction of characteristic process parameters by FTNIR spectroscopic analysis W. Summerer, RECENDT GmbH, Linz, Austria 14:50 2.5.5 Microimmersion lens LEDs for portable photoacoustic
2.1.4 Invited Automotive Exhaust Gas Sensing - Current Trends	2.2.4 Graphene based fiber optic surface plasmon resonance for biochemical sensor applications J. A. Kim, Sungkyunkwan University, Suwon, Korea 15:00	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects J. Hennemann, University Giessen, Giessen, Germany 14:50 2.3.5 Invited Large-Scale Integration of Nanomechanical Sensors	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-inorganic hybrids J. Xu, Shanghai University, Shanghai, China 14:50 2.4.5 Silicon cantilever resonators integrated with portable electrostatic samplers for sensing and characterizing	2.5.4 Reliable online-prediction of characteristic process parameters by FTNIR spectroscopic analysis W. Summerer, RECENDT GmbH, Linz, Austria 14:50 2.5.5 Microimmersion lens LEDs for portable photoacoustic methane sensors
2.1.4 Invited Automotive Exhaust Gas Sensing - Current Trends	2.2.4 Graphene based fiber optic surface plasmon resonance for biochemical sensor applications J. A. Kim, Sungkyunkwan University, Suwon, Korea 15:00 2.2.5 Microarrayed 2D-SPR immunosensor for interleukin-2	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects J. Hennemann, University Giessen, Giessen, Germany 14:50 2.3.5 Invited Large-Scale Integration of Nanomechanical Sensors	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-inorganic hybrids J. Xu, Shanghai University, Shanghai, China 14:50 2.4.5 Silicon cantilever resonators integrated with portable electrostatic samplers for sensing and characterizing engineered nanoparticles in workplace air	2.5.4 Reliable online-prediction of characteristic process parameters by FTNIR spectroscopic analysis W. Summerer, RECENDT GmbH, Linz, Austria 14:50 2.5.5 Microimmersion lens LEDs for portable photoacoustic methane sensors
2.1.4 Invited Automotive Exhaust Gas Sensing - Current Trends Kathy Sahner, Robert Bosch GmbH, Stuttgart, Germany	2.2.4 Graphene based fiber optic surface plasmon resonance for biochemical sensor applications J. A. Kim, Sungkyunkwan University, Suwon, Korea 15:00 2.2.5	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects J. Hennemann, University Giessen, Giessen, Germany 14:50 2.3.5 Invited Large-Scale Integration of Nanomechanical Sensors	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-inorganic hybrids J. Xu, Shanghai University, Shanghai, China 14:50 2.4.5 Silicon cantilever resonators integrated with portable electrostatic samplers for sensing and characterizing engineered nanoparticles in workplace air H. S. Wasisto, TU Braunschweig, Braunschweig, Germany	2.5.4 Reliable online-prediction of characteristic process parameters by FTNIR spectroscopic analysis W. Summerer, RECENDT GmbH, Linz, Austria 14:50 2.5.5 Microimmersion lens LEDs for portable photoacoustic methane sensors B. Matveev, loffe Institute, St. Petersburg, Russia
2.1.4 Invited Automotive Exhaust Gas Sensing - Current Trends Kathy Sahner, Robert Bosch GmbH, Stuttgart, Germany 15:10	2.2.4 Graphene based fiber optic surface plasmon resonance for biochemical sensor applications J. A. Kim, Sungkyunkwan University, Suwon, Korea 15:00 2.2.5 Microarrayed 2D-SPR immunosensor for interleukin-2	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects J. Hennemann, University Giessen, Giessen, Germany 14:50 2.3.5 Invited Large-Scale Integration of Nanomechanical Sensors	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-inorganic hybrids J. Xu, Shanghai University, Shanghai, China 14:50 2.4.5 Silicon cantilever resonators integrated with portable electrostatic samplers for sensing and characterizing engineered nanoparticles in workplace air H. S. Wasisto, TU Braunschweig, Braunschweig, Germany	2.5.4 Reliable online-prediction of characteristic process parameters by FTNIR spectroscopic analysis W. Summerer, RECENDT GmbH, Linz, Austria 14:50 2.5.5 Microimmersion lens LEDs for portable photoacoustic methane sensors
2.1.4 Invited Automotive Exhaust Gas Sensing - Current Trends Kathy Sahner, Robert Bosch GmbH, Stuttgart, Germany	2.2.4 Graphene based fiber optic surface plasmon resonance for biochemical sensor applications J. A. Kim, Sungkyunkwan University, Suwon, Korea 15:00 2.2.5 Microarrayed 2D-SPR immunosensor for interleukin-2	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects J. Hennemann, University Giessen, Giessen, Germany 14:50 2.3.5 Invited Large-Scale Integration of Nanomechanical Sensors	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-inorganic hybrids J. Xu, Shanghai University, Shanghai, China 14:50 2.4.5 Silicon cantilever resonators integrated with portable electrostatic samplers for sensing and characterizing engineered nanoparticles in workplace air H. S. Wasisto, TU Braunschweig, Braunschweig, Germany 15:10	2.5.4 Reliable online-prediction of characteristic process parameters by FTNIR spectroscopic analysis W. Summerer, RECENDT GmbH, Linz, Austria 14:50 2.5.5 Microimmersion lens LEDs for portable photoacoustic methane sensors B. Matveev, Ioffe Institute, St. Petersburg, Russia
2.1.4 Invited Automotive Exhaust Gas Sensing - Current Trends Kathy Sahner, Robert Bosch GmbH, Stuttgart, Germany 15:10	2.2.4 Graphene based fiber optic surface plasmon resonance for biochemical sensor applications J. A. Kim, Sungkyunkwan University, Suwon, Korea 15:00 2.2.5 Microarrayed 2D-SPR immunosensor for interleukin-2	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects J. Hennemann, University Giessen, Giessen, Germany 14:50 2.3.5 Invited Large-Scale Integration of Nanomechanical Sensors	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-inorganic hybrids J. Xu, Shanghai University, Shanghai, China 14:50 2.4.5 Silicon cantilever resonators integrated with portable electrostatic samplers for sensing and characterizing engineered nanoparticles in workplace air H. S. Wasisto, TU Braunschweig, Braunschweig, Germany	2.5.4 Reliable online-prediction of characteristic process parameters by FTNIR spectroscopic analysis W. Summerer, RECENDT GmbH, Linz, Austria 14:50 2.5.5 Microimmersion lens LEDs for portable photoacoustic methane sensors B. Matveev, Ioffe Institute, St. Petersburg, Russia
2.1.4 Invited Automotive Exhaust Gas Sensing - Current Trends Kathy Sahner, Robert Bosch GmbH, Stuttgart, Germany 15:10	2.2.4 Graphene based fiber optic surface plasmon resonance for biochemical sensor applications J. A. Kim, Sungkyunkwan University, Suwon, Korea 15:00 2.2.5 Microarrayed 2D-SPR immunosensor for interleukin-2 M. Suzuki, University of Toyama, Toyama, Japan	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects J. Hennemann, University Giessen, Giessen, Germany 14:50 2.3.5 Invited Large-Scale Integration of Nanomechanical Sensors	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-inorganic hybrids J. Xu, Shanghai University, Shanghai, China 14:50 2.4.5 Silicon cantilever resonators integrated with portable electrostatic samplers for sensing and characterizing engineered nanoparticles in workplace air H. S. Wasisto, TU Braunschweig, Braunschweig, Germany 15:10	2.5.4 Reliable online-prediction of characteristic process parameters by FTNIR spectroscopic analysis W. Summerer, RECENDT GmbH, Linz, Austria 14:50 2.5.5 Microimmersion lens LEDs for portable photoacoustic methane sensors B. Matveev, Ioffe Institute, St. Petersburg, Russia 15:10 2.5.6 Photoacoustic methane detection using a novel DFB-type diode laser at 3.3 µm
2.1.4 Invited Automotive Exhaust Gas Sensing - Current Trends Kathy Sahner, Robert Bosch GmbH, Stuttgart, Germany 15:10 2.1.5 Gas sensor MEMS platform for harsh conditions	2.2.4 Graphene based fiber optic surface plasmon resonance for biochemical sensor applications J. A. Kim, Sungkyunkwan University, Suwon, Korea 15:00 2.2.5 Microarrayed 2D-SPR immunosensor for interleukin-2 M. Suzuki, University of Toyama, Toyama, Japan	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects J. Hennemann, University Giessen, Giessen, Germany 14:50 2.3.5 Invited Large-Scale Integration of Nanomechanical Sensors	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-inorganic hybrids J. Xu, Shanghai University, Shanghai, China 14:50 2.4.5 Silicon cantilever resonators integrated with portable electrostatic samplers for sensing and characterizing engineered nanoparticles in workplace air H. S. Wasisto, TU Braunschweig, Braunschweig, Germany 15:10 2.4.6 Corrole-based nanostructures for sensing applications	2.5.4 Reliable online-prediction of characteristic process parameters by FTNIR spectroscopic analysis W. Summerer, RECENDT GmbH, Linz, Austria 14:50 2.5.5 Microimmersion lens LEDs for portable photoacoustic methane sensors B. Matveev, Ioffe Institute, St. Petersburg, Russia 15:10 2.5.6 Photoacoustic methane detection using a novel DFB-type diode laser at 3.3 µm S. Rhein, Hamburg University of Applied Sciences,
2.1.4 Invited Automotive Exhaust Gas Sensing - Current Trends Kathy Sahner, Robert Bosch GmbH, Stuttgart, Germany 15:10 2.1.5 Gas sensor MEMS platform for harsh conditions	2.2.4 Graphene based fiber optic surface plasmon resonance for biochemical sensor applications J. A. Kim, Sungkyunkwan University, Suwon, Korea 15:00 2.2.5 Microarrayed 2D-SPR immunosensor for interleukin-2 M. Suzuki, University of Toyama, Toyama, Japan 15:20 2.2.6	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects J. Hennemann, University Giessen, Giessen, Germany 14:50 2.3.5 Invited Large-Scale Integration of Nanomechanical Sensors Stephane Evoy, University of Alberta, Edmonton, Canada	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-inorganic hybrids J. Xu, Shanghai University, Shanghai, China 14:50 2.4.5 Silicon cantilever resonators integrated with portable electrostatic samplers for sensing and characterizing engineered nanoparticles in workplace air H. S. Wasisto, TU Braunschweig, Braunschweig, Germany 15:10 2.4.6 Corrole-based nanostructures for sensing applications	2.5.4 Reliable online-prediction of characteristic process parameters by FTNIR spectroscopic analysis W. Summerer, RECENDT GmbH, Linz, Austria 14:50 2.5.5 Microimmersion lens LEDs for portable photoacoustic methane sensors B. Matveev, loffe Institute, St. Petersburg, Russia 15:10 2.5.6 Photoacoustic methane detection using a novel DFB-type diode laser at 3.3 µm
2.1.4 Invited Automotive Exhaust Gas Sensing - Current Trends Kathy Sahner, Robert Bosch GmbH, Stuttgart, Germany 15:10 2.1.5 Gas sensor MEMS platform for harsh conditions	2.2.4 Graphene based fiber optic surface plasmon resonance for biochemical sensor applications J. A. Kim, Sungkyunkwan University, Suwon, Korea 15:00 2.2.5 Microarrayed 2D-SPR immunosensor for interleukin-2 M. Suzuki, University of Toyama, Toyama, Japan 15:20 2.2.6 Developing electrochemical impedance immunosensor for	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects J. Hennemann, University Giessen, Giessen, Germany 14:50 2.3.5 Invited Large-Scale Integration of Nanomechanical Sensors Stephane Evoy, University of Alberta, Edmonton, Canada	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-inorganic hybrids J. Xu, Shanghai University, Shanghai, China 14:50 2.4.5 Silicon cantilever resonators integrated with portable electrostatic samplers for sensing and characterizing engineered nanoparticles in workplace air H. S. Wasisto, TU Braunschweig, Braunschweig, Germany 15:10 2.4.6 Corrole-based nanostructures for sensing applications	2.5.4 Reliable online-prediction of characteristic process parameters by FTNIR spectroscopic analysis W. Summerer, RECENDT GmbH, Linz, Austria 14:50 2.5.5 Microimmersion lens LEDs for portable photoacoustic methane sensors B. Matveev, Ioffe Institute, St. Petersburg, Russia 15:10 2.5.6 Photoacoustic methane detection using a novel DFB-type diode laser at 3.3 µm S. Rhein, Hamburg University of Applied Sciences,
2.1.4 Invited Automotive Exhaust Gas Sensing - Current Trends Kathy Sahner, Robert Bosch GmbH, Stuttgart, Germany 15:10 2.1.5 Gas sensor MEMS platform for harsh conditions	2.2.4 Graphene based fiber optic surface plasmon resonance for biochemical sensor applications J. A. Kim, Sungkyunkwan University, Suwon, Korea 15:00 2.2.5 Microarrayed 2D-SPR immunosensor for interleukin-2 M. Suzuki, University of Toyama, Toyama, Japan 15:20 2.2.6	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects J. Hennemann, University Giessen, Giessen, Germany 14:50 2.3.5 Invited Large-Scale Integration of Nanomechanical Sensors Stephane Evoy, University of Alberta, Edmonton, Canada	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-inorganic hybrids J. Xu, Shanghai University, Shanghai, China 14:50 2.4.5 Silicon cantilever resonators integrated with portable electrostatic samplers for sensing and characterizing engineered nanoparticles in workplace air H. S. Wasisto, TU Braunschweig, Braunschweig, Germany 15:10 2.4.6 Corrole-based nanostructures for sensing applications	2.5.4 Reliable online-prediction of characteristic process parameters by FTNIR spectroscopic analysis W. Summerer, RECENDT GmbH, Linz, Austria 14:50 2.5.5 Microimmersion lens LEDs for portable photoacoustic methane sensors B. Matveev, Ioffe Institute, St. Petersburg, Russia 15:10 2.5.6 Photoacoustic methane detection using a novel DFB-type diode laser at 3.3 µm S. Rhein, Hamburg University of Applied Sciences,
2.1.4 Invited Automotive Exhaust Gas Sensing - Current Trends Kathy Sahner, Robert Bosch GmbH, Stuttgart, Germany 15:10 2.1.5 Gas sensor MEMS platform for harsh conditions	2.2.4 Graphene based fiber optic surface plasmon resonance for biochemical sensor applications J. A. Kim, Sungkyunkwan University, Suwon, Korea 15:00 2.2.5 Microarrayed 2D-SPR immunosensor for interleukin-2 M. Suzuki, University of Toyama, Toyama, Japan 15:20 2.2.6 Developing electrochemical impedance immunosensor for	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects J. Hennemann, University Giessen, Giessen, Germany 14:50 2.3.5 Invited Large-Scale Integration of Nanomechanical Sensors Stephane Evoy, University of Alberta, Edmonton, Canada	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-inorganic hybrids J. Xu, Shanghai University, Shanghai, China 14:50 2.4.5 Silicon cantilever resonators integrated with portable electrostatic samplers for sensing and characterizing engineered nanoparticles in workplace air H. S. Wasisto, TU Braunschweig, Braunschweig, Germany 15:10 2.4.6 Corrole-based nanostructures for sensing applications	2.5.4 Reliable online-prediction of characteristic process parameters by FTNIR spectroscopic analysis W. Summerer, RECENDT GmbH, Linz, Austria 14:50 2.5.5 Microimmersion lens LEDs for portable photoacoustic methane sensors B. Matveev, Ioffe Institute, St. Petersburg, Russia 15:10 2.5.6 Photoacoustic methane detection using a novel DFB-type diode laser at 3.3 µm S. Rhein, Hamburg University of Applied Sciences,
2.1.4 Invited Automotive Exhaust Gas Sensing - Current Trends Kathy Sahner, Robert Bosch GmbH, Stuttgart, Germany 15:10 2.1.5 Gas sensor MEMS platform for harsh conditions	2.2.4 Graphene based fiber optic surface plasmon resonance for biochemical sensor applications J. A. Kim, Sungkyunkwan University, Suwon, Korea 15:00 2.2.5 Microarrayed 2D-SPR immunosensor for interleukin-2 M. Suzuki, University of Toyama, Toyama, Japan 15:20 2.2.6 Developing electrochemical impedance immunosensor for the detection of myoglobin in blood serum	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects J. Hennemann, University Giessen, Giessen, Germany 14:50 2.3.5 Invited Large-Scale Integration of Nanomechanical Sensors Stephane Evoy, University of Alberta, Edmonton, Canada	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-inorganic hybrids J. Xu, Shanghai University, Shanghai, China 14:50 2.4.5 Silicon cantilever resonators integrated with portable electrostatic samplers for sensing and characterizing engineered nanoparticles in workplace air H. S. Wasisto, TU Braunschweig, Braunschweig, Germany 15:10 2.4.6 Corrole-based nanostructures for sensing applications	2.5.4 Reliable online-prediction of characteristic process parameters by FTNIR spectroscopic analysis W. Summerer, RECENDT GmbH, Linz, Austria 14:50 2.5.5 Microimmersion lens LEDs for portable photoacoustic methane sensors B. Matveev, Ioffe Institute, St. Petersburg, Russia 15:10 2.5.6 Photoacoustic methane detection using a novel DFB-type diode laser at 3.3 µm S. Rhein, Hamburg University of Applied Sciences,
2.1.4 Invited Automotive Exhaust Gas Sensing - Current Trends Kathy Sahner, Robert Bosch GmbH, Stuttgart, Germany 15:10 2.1.5 Gas sensor MEMS platform for harsh conditions	2.2.4 Graphene based fiber optic surface plasmon resonance for biochemical sensor applications J. A. Kim, Sungkyunkwan University, Suwon, Korea 15:00 2.2.5 Microarrayed 2D-SPR immunosensor for interleukin-2 M. Suzuki, University of Toyama, Toyama, Japan 15:20 2.2.6 Developing electrochemical impedance immunosensor for the detection of myoglobin in blood serum	2.3.4 Electrospun copper(II)oxide fibers as highly sensitive and selective sensor for hydrogen sulfide utilizing percolation effects J. Hennemann, University Giessen, Giessen, Germany 14:50 2.3.5 Invited Large-Scale Integration of Nanomechanical Sensors Stephane Evoy, University of Alberta, Edmonton, Canada	2.4.4 Quartz crystal microbalance sensor for organic vapor detection based on silica-based mesoporous organic-inorganic hybrids J. Xu, Shanghai University, Shanghai, China 14:50 2.4.5 Silicon cantilever resonators integrated with portable electrostatic samplers for sensing and characterizing engineered nanoparticles in workplace air H. S. Wasisto, TU Braunschweig, Braunschweig, Germany 15:10 2.4.6 Corrole-based nanostructures for sensing applications	2.5.4 Reliable online-prediction of characteristic process parameters by FTNIR spectroscopic analysis W. Summerer, RECENDT GmbH, Linz, Austria 14:50 2.5.5 Microimmersion lens LEDs for portable photoacoustic methane sensors B. Matveev, Ioffe Institute, St. Petersburg, Russia 15:10 2.5.6 Photoacoustic methane detection using a novel DFB-type diode laser at 3.3 µm S. Rhein, Hamburg University of Applied Sciences,

		Monday, 21.05.2012		
Room Mailand Carbon Nano Tubes Chair: Marcel Bouvet	Room München 1 Biosensors III (cell based) Chair: Hossam Haick	Room Brüssel Metal Oxide-based Gas Sensors III Chair: Jong-Heun Lee	Room München 2 Sensor Systems Chair: Danick Briand	Room Athen ISFETs Chair: Zbigniew Brzozka
3.1.1 Micro-reactors and gas sensors based on locally heated carbon nanotubes decorated with Ti nanoparticles S. Moshkalev, Universidade de Campinas, Campinas, Brazil	17:00 3.2.1 Invited Designing an interface and cell for cellular biosensing Tetsuya Haruyama , Kyushu Institute of Technology, Kyushu, Japan	17:00 3.3.1 Invited Ceria - Fundamentals and Applications in Different Fields of Gas Sensors Noriya Izu, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, Japan	17:00 3.4.1	The street of th
Chirality-selective fabrication of carbon nanotube gas sensor using spin-column chromatography and dielectrophoresis J. Suehiro, Kyushu University, Fukuoka, Japan	Toward functional engineered tissues as biosensors using	17:30 3.3.2 Gas sensing properties of pulsed laser deposited vanadium oxide thin films	New planar trace humidity sensor C. Tiebe, BAM Federal Institute for Materials Research and Testing, Berlin, Germany	Fluorinated-HfO ₂ ISFET as pK sensor with highly sensitivity
17:40 3.1.3 Invited Ultra-low power single-walled carbon nanotube fased chemical sensors	J. Ramón-Azcón, Tohoku University, Sendai, Japan	J. Huotari, University of Oulu, Oulu, Finnland	17:40 3.4.3 Disruptive MEMS technology replaces conventional bead pellistor device	17:40 3.5.3 High polarization HfO ₂ sensing on K ⁺ for inflammasome cell detection application
Christofer Hierold, ETH-Zürich, Zürich, Switzerland	Living cell-based gas sensor system for the detection of unexpected gaseous organic compounds in air	17:50 3.3.3 Chemically synthesized one-dimensional zinc oxide nanorods for ethanol sensing W. Wlodarski, School of Electrical and Computer	S. Trautweiler, e2v microsensors sa, Corcelles, Switzerland 18:00	PW. Liao, Chang Gung University, Taoyuan, Taiwan 18:00
	Technologies, Munich, Germany	Engineering, RMIT University, Melbourne, Australia	3.4.4 Miniature gas analysis system for volatile organic compounds	3.5.4 Multiparametric microsensors on lab-on-chip systems for the detection of dissolved substances
3.1.4 New electrochemical (bio)sensing strategies based on the use of dispersed carbon nanotubes G. A. Rivas, Universidad Nacional de Cordoba, Cordoba, Argentina	[pH] ₀ imaging in proton releasing cells by an ion image sensor-based chemical microscopy	18:10 3.3.4 Zeolite modified gas sensors for environmental monitoring R. Binions, University College London, London, UK	U. Lehmann, Microsens SA, Neuchatel, Switzerland	Y. Eminaga, Technische Universität München, Munich, Germany

Tuesday, 22.05.2012

08:30 - 09:15 Room Brüssel - Plenary Session - Chair: Udo Weimar

Krishna Persaud (The University of Manchester, Manchester, UK) - Reverse Engineering of Nature in the Field of Chemical Sensors

09:15 - 10:00 Room Brüssel - Plenary Session - Chair: Yoshihiko Sadaoka

09:15 - 10:00 Room Brussel - Plenary Session - Chair: Yoshiniko Sadaoka Harry Tuller (Massachusetts Institute of Technology, MIT, Cambridge, USA) - Materials for High Temperature Electrochemical Applications						
	10:00 - 10:30 Coffee					
Room Mailand Electronic Potential-based Sensors Chair: Gerhard Müller	Room München 1 Biosensors IV (Systems) Chair: Tetsuya Haruyama	Room Brüssel Metal Oxide-based Gas Sensors IV Chair: Noriya Izu	Room München 2 EU NetAir (Special Session) I Chair: Giorgio Sberveglieri	Room Athen Wireless Sensing Chair: Maximilian Fleischer		
4.1.1 Kelvin probe study of gas sensing properties of porphyrins coated ZnO nanorods C. Di Natale, University of Rome Tor Vergata, Roma, Italy	4.2.1 Bisphenol A sensing device utilizing antibody modified beads on a microfluidic disk I. Kubo, Soka University, Tokyo, Japan	medium for gas sensor application	10:30 4.4.1 Invited Overview of the COST Action TD1105 EuNetAir Michele Penza, ENEA, IT - Action Coordinator	10:30 4.5.1 Invited MHz and GHz wireless chem/bio sensors for environmental, industrial, and security applications Radislav A. Potyrailo, GE Global Research, Niskayuna, New York, USA		
10:50 4.1.2 Metal-organic frameworks as an aldehyde sensing layer in work-function based gas sensing devices P. Davydovskaya, Siemens Corporate Research and Technologies, Munich, Germany	10:50 4.2.2 In-check system: a highly integrated silicon lab-on-chip for sample preparation, PCR amplification and microarray detection towards the molecular diagnostics point-of-care S. Petralia, ST Microelectronics, Catania, Italy	individual nanowire sensors	10:50 4.4.2 Invited Chemical NanoSensors and Microsystems for Air Pollution Detection Juan Ramon Morante, Departament d'Electrònica, Universitat de Barcelona, Spain	11:00 4.5.2 Development of printed RFID sensor tags for smart food		
11:10 4.1.3 Pt/Au based sensor with a PMMA film for detecting CO in hydrogen-rich atmosphere	4.2.3 a Mesoporous TiO ₂ coating for increased sensitivity of Love wave delay-lines for heavy metal detection	Advances in nano-chemistry for chemical sensors	11:10 4.4.3 Invited Carbon Nanomaterials for Environmental Monitoring Sensors	packaging E. Smits, Holst Centre, Eindhoven, Netherlands		
S. Simon, University of the Federal Armed Forces Germany Munich, Germany	, l. Gammoudi, Université de Bordeaux, Talence, France		Eduard Llobet Valero, Universitat Rovira i Virgili, Tarragona, Spain	11:20 4.5.3 A novel design of antenna for biosensing applications		
11:30 4.1.4 Work function analysis of gas sensitive WO ₃ layers with Pt dopants	11:30 4.2.4 Piezoelectric olfactory receptor biosensor with aptamerassisted immobilization technique		11:30 4.4.4 Invited SCR-catalyst materials for exhaust gas detection Daniela Schoenauer-Kamin, University of Bayreuth,	CW. Lin, National Taiwan University, Taipei, Taiwan		
G. Halek, Wroclaw University of Technology, Wroclaw, Poland	L. Du, Zhejiang University, Hangzhou, China	11:40 4.3.4 Synthesis and gas sensing properties of hierarchical SnO ₂ nanostructures	Bayreuth, Germany	11:40 4.5.4 Contactless wide band near field microwave sensing techniques in microfluidic applications		
11:50 4.1.5 Invited Surface ionization detection of amine containing drugs in backgrounds of pharmaceuticals and extender material	11:50 4.2.5 A MEMS based Fabry-Perot protein sensor with reference sensor	P. Sun, Jilin University, Changchun, China	11:50 4.4.5 Invited Surface Ionization on Metal Oxide Gas Sensors	T. Nacke, Institut für Bioprozess- und Analysenmesstechnik, Heilbad Heiligenstadt, Germany		
Angelika Hackner, EADS Innovation Works, Munich, Germany	K. Takahashi, Toyohashi University of Technology, Toyohashi, Japan 12:10 4.2.6	12:00 4.3.5 One-pot hydrothermal synthesis of SnO and SnO ₂ nanostructures enhanced H ₂ sensing attributed to in-situ p- n junctions S. Arun Kumar, CSIR Indian Institute of Chemical Technology,	Andrea Ponzoni, SENSOR Lab. CNR-IDASC, Brescia, Italy 12:10 4.4.6 Invited	12:00 4.5.5 Passive RFID sensors for monitoring of bacterial growth R. A. Potyrailo, GE Global Research, Niskayuna, USA		
	Comparison of label-free ACh image sensors based on CCD and LAPS	Andhra Pradesh, India	Microsystems-based Technologies for Air-Pollutant and Gas Detection			

Danick Briand, EPFL, Lausanne, Switzerland

C. Werner, FH Aachen, Aachen, Germany

		Tuesday, 22.05.2012		
Room Mailand Impedance-based Sensing Chair: Martin Hämmerle	Room München 1 Novel Sensing Principles Chair: Alberto Lamagna	Room Brüssel Metal Oxide-based Gas Sensors V Chair: Christophe Pijolat	Room München 2 Resonant Sensors II Chair: Wojtek Wlodarski	Room Athen Cation Conductor-based Gas Sensors Chair: Norio Miura
13:30 5.1.1 Detection of pathogenic Staphylococcus aureus bacteria b electrochemical impedance spectroscopy M. Braiek, Claude Bernard University Lyon, Lyon, France	13:30 5.2.1 y Development of highly selective interdigitated electrode (IDE) sensor array using molecular imprinted polymer (MIP) for detection of mango fruit ripeness H. Hawari, University Malaysia Perlis, Arau, Malaysia	5.3.1 High-precise transient response model of semiconductor gas sensor considering temperature dependency of carrier mobility A. Fujimoto, Wakayama National College of Technology,	13:30 5.4.1 Invited Potentials of Capacitive Micromachined Ultrasonic Transducers (CMUT) and Film Bulk Acoustic Wave Resonators (FBAR) for Gas Sensing - an Industrial Point of View	${\bf 13:30} \\ 5.5.1 \\ \text{Propofol analysis using a TiO}_2 \text{ nanotube-based gas sensor} \\ \text{and a solid electrolyte CO}_2 \text{ sensor} \\ \\ \text{T. Kida, Kyushu University, Fukuoka, Japan}$
13:50 5.1.2 Poly(pyrrole-3-carboxylic acid) thin film based T-SPR immunosensor for detection of human IgG	13:50 5.2.2 The influence of SO_2 and the thickness of the sensitive layer on the performance of the integrating NO_{α} sensor	Gobo-shi, Japan 13:50 5.3.2 WO ₃ sensor for ppb detection of ammonia J. Vetelino, University Of Maine, Orono, USA	Roland Pohle, Siemens AG, München, Germany	13:50 5.5.2 Improvement of response/recovery behavior to CO ₂ gas on solid electrolyte electrochemical gas sensor
J. Rapiphun, Chiang Mai University, Chiang Mai, Thailand 14:10 5.1.3 DNA electrodes for detection of sequence specific nucleic acid-ligand interaction	A. Groß, University of Bayreuth, Bayreuth, Germany 14:10 5.2.3 Design and fabrication of a novel 3D micropellistor	14:10 5.3.3 Invited Functional nanostructures for sensitive, selective and reliable gas sensors	5.4.2 Quantification of benzene in ground water using SH- surface acoustic wave sensors F. Josse, Marquette University, Milwaukee, USA	HK. Lee, Electronics & Telecommunications Research Institutes (ETRI), Daejeon, Korea 14:10 5.5.3 Proton conduction in electrolyte made of manganese dioxide for hydrogen gas sensor
F.Lisdat, Wildau Technical University of Applied Sciences, Wildau, Germany 14:30	T. Li, Chinese Academy of Sciences, Shanghai, China 14:30	Jong-Heun Lee, Korea University, Seoul, Korea	14:20 5.4.3 Study of odor preconcentrator using SAW device Y. Yokoshiki, Tokyo Institute of Technology, Tokyo, Japan	H. Koyanaka, Kyoto University, Kyoto, Japan
5.1.4 Impedance-based immobilized enzyme biosensor for detection of organophosphates	5.2.4 Emissive exciplexes of surface-immobilized dibenzoylmethanatoboron difluoride with gaseous benzene, toluene and xylenes	14:40	14:40	5.5.4 Progress in solid electrochemical gas sensors based on NASICON and oxide electrodes
M. F. Smiechowski, Guild Associates, Dublin, USA	V. Sazhnikov, Photochemistry Center of RAS, Moscow, Russia	5.3.4 Influence of Pd and Pt doping concerning the sensing mechanism	5.4.4 Warfare gas detection at trace level using a multiple SAW sensor approach based on functionalised nanodiamond coatings	G. Lu, Jilin University, Changchun, China
14:50 5.1.5 Invited Multimodal gas detection by molecular materials Marcel Bouvet, Université de Bourgogne, Dijon, France	14:50 5.2.5 Polymer optical fibers as gas sensors M. Dorrestijn, Empa, St. Gallen, Switzerland	K. Großmann, Institute of Physical Chemistry, Tuebingen, Germany	B. Tard, Cea List, Gif-sur-yvette cedex, France	14:50 5.5.5 Highly water durable NH ₃ gas sensor based on Al ³⁺ ion conducting solid electrolyte with NH ⁴⁺ -gallate
		5.3.5 Material design for high-sensitive semiconducting gas sensors - preparation of Pd-loaded SnO ₂ cluster sols	15:00 5.4.5 A hydrogen sulfide sensor based on a surface acoustic wave resonator combined with ionic liquid	S. Tamura, Osaka University, Suita Osaka, Japan
	15:10 5.2.6 Au nanoparticle plasmon sensor for terpene detection B. Chen, Graduate School of Information Science and	K. Shimanoe, Kyushu University, Fukuoka, Japan	M. Hara, Tohoku University, Miyagi, Japan	15:10 5.5.6 Stacked type potentiometric solid-state CO ₂ gas sensor for miniaturization
	Electrical Engineering, Kyushu University, Fukuoka, Japan			NJ. Choi, Electronics and Telecommunications Research Institute, Daejeon, Korea
		15:30 - 16:00 Coffee		

15:30 - 16:00 Coffee

15:30 - 17:00 - Poster Session 2

18:30 - 19:30 - Official Reception at the Nürnberg Town Hall

20:00 - 23:00 - Conference Dinner

Room Mailand FET- and MIP-based Sensors Chair: Jacobus van Staden	Room München 1 Flexible Substrate Sensors Chair: Radislav A. Potyrailo	Room Brüssel Metal Oxide-based Gas Sensors VI Chair: Eduard Llobet Valero	Room München 2 Sensors for Explosives Chair: Steve Semancik	Room Athen YSZ-based Sensors Chair: Chong-Ook Park
08:30 6.1.1 Invited 6.2.1 Biomimetic sensors using 'gate Printed c	08:30 capacitive transducers on flexible plastic substrates			08:30 6.5.1 Sensitive and selective detection of hydrogen using YSZ-
effect' of molecularly imprinted polyme with increprocedure	reased stability: the role of the passivation	Qurashi Ahsan-Ul-Haq, King Fahd University of Petroleum	a vertical array with a porous electrode	based sensor with Zn-Ta-based oxide sensing electrode
Yasuo Yoshimi, Shibaura Institute of Technology, Tokyo, Japan Ulrike Alt Germany	ltenberend, University of Tübingen, Tübingen,	& Minerals, Dhahran, Saudi Arabia	Ch. Field, Naval Research Laboratory, Washington DC, USA	S. Anggrann, kyusnu University, Fukuoka, Japan
6.2.2	08:50		08:50 6.4.2	08:50 6.5.2
	sensors for an indoor air quality sensor system		A particle sampler for trace detection of explosives	Gas selectivity improvement of YSZ-based VOC sensor via application of selective catalytic layer over sensing-
09:00 HE. End	dres, Fraunhofer EMFT, Munich, Germany	09:00 6.3.2	S. Beer, EADS Innovation Works, Munich, Germany	electrode
Artificial odor map and cluster sensing by MIP adsorbents		Innovative VOC-CO ₂ -sensor-system for indoor air quality monitoring		T. Sato, Kyushu University, Fukuoka, Japan
		Geschwenda, Germany	Selection of a sensitive material for the detection of	09:10 6.5.3 Invited Recent developments in materials for potentiometric sensors
09:20 6.1.3 Fragment-modified graphene FET for highly sensitive detection of antigen-antibody reaction		6.3.3 Hydrogen sensor using thin film with interspace		Jens Zosel, Kurt-Schwabe-Institut für Mess- und Sensortechnik e.V. Meinsberg, Ziegra-Knobelsdorf, Germany
	09:30 e of flexible substrate materials on the ance of polymer composite gas sensors		6.4.4 Development of a gas micro-preconcentrator for the analysis of explosive traces: study and characterization of various adsorbing materials	
	bwitzerland	09:40 6.3.4 Noble metal added tip evide VCC consers as penanal	Y. Mohsen, Université de Franche Comté, Besançon, France	09:40 6.5.4 VOC sensing devices with a planar-type structure based on YSZ and modified Pt electrode
H. Anan, Nagoya University, Nagoya, Japan		T. Itoh, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, Japan		Y. Sadaoka, Graduate School of Science and Engineering, Ehime, Japan
				II II

10:00 - 10:30 Coffee

Wednesday, 23.05.2012				
Room Mailand Chemical Sensors for Medial Application Chair: Yasuo Yoshimi	Room München 1 Electrochemical Sensors I Chair: Agata Michalska	Room Brüssel Metal Oxide-based Gas Sensors VII Chair: Inkyu Park	Room München 2 EU NetAir (Special Session) II Chair: Michele Penza	Room Athen Chemical Sensors Using Optical Technologies Chair: Susan Rose-Pehrsson
10:30 7.1.1 Invited Chemical Nanoarrays for Early Detection and Screening of Lung Cancer via Volatile Biomarkers Hossam Haick, Technion-Israel Institute of Technology, Haifa, Israel	10:30 7.2.1 Influence of sintering temperatures on the performance of ZnO-doped RuO ₂ sensing electrode of electrochemical DO Sensor S. Zhuiykov, CSIRO - Commonwealth Scientific Industrial Research Organisation, Highett, Australia		10:30 7.4.1 Invited Chemical Sensors for Indoor Applications Andreas Schütze, Universität des Saarlandes, Saarbrücken, Germany	10:30 7.5.1 a-Cyclodextrin functionalized planar Bragg grating sensor for the detection of small arene traces in solvent vapour M. Girschikofsky, University of Applied Sciences Aschaffenburg, Aschaffenburg, Germany
11:00 7.1.2 A novel tool for biochemical diagnostics of rare genetic disorders: an integrated microfluidic system with optical	7.2.2 A novel flexible chemical imaging set-up of amorphous Sibased light-addressable potentiometric sensor by video projector A. Das, Chang Gung University, Taoyuan, Taiwan	7.3.2 Probing the surface chemistry of single nanowire sensor in operando mode A. Komakov, Southern Illinois University, Carbondale, USA	10:50 7.4.2 Invited Chemical sensor systems for emission control from combustions Anita Lloyd Spetz, Linkoping University, Linköping, Sweden	10:50 7.5.2 PDA-based multifunctional microfluidic sensor system R. A. Potyrailo, GE Global Research, Niskayuna, USA
detection Z. Brzozka, Warsaw University of Technology, Warsaw, Poland 11:20	7.2.3 Glass based redox sensor W. Vonau, Kurt-Schwabe-Institut für Mess- und Sensortechnik e.V. Meinsberg, Ziegra-Knobelsdorf,	11:10 7.3.3 Invited Fundamentals of metal oxide gas sensors Nicolae Barsan, Universität Tübingen, Tübingen, Germany	11:10 7.4.3 Invited Low Power Sensor Systems Technologies for Environmental Air-Monitoring Sywert Brongersma, IMEC-Holst Centre, Eindhoven,	11:10 7.5.3 pH sensor based on tilted fiber Bragg gratings covered by a sol-gel M. Debliquy, University of Mons, Mons, Belgium
7.1.3 Breath acetone monitoring by portable Si:WO₃ gas sensors M. Righettoni, Department of Mechanical and Process Engineering ETH Zurich, Zurich, Switzerland	T1:30 7.2.4 Amperometric Dot-sensors based on zinc porphyrins for the determination of sildenafil citrate		Netherlands 11:30 7.4.4 Invited Electrochemical Sensors for Environmental Monitoring in Cities	11:30 7.5.4 Flexible optical chemical sensor platform for BTX J. D. Arias Espinoza, Holst Centre/TNO, Eindhoven,
11:40 7.1.4 Monitoring breath carbon monoxide gas using micro thermoelectric sensor	Romania	7.3.4 Thin-film gas sensors operating in a perpendicular current mode	Rod Jones, University of Cambridge, Cambridge, UK	Netherlands
W. Shin, AIST, Nagoya, Japan	7.2.5 High-speed chemical imaging system based on front-side illuminated LAPS	Y. Ishikawa, Tokyo Denki University, Tokyo, Japan	7.4.5 Invited Wireless Chemical Sensor Networks for Air quality monitoring	11:50 7.5.5 Invited Optical fiber spectroscopy for food quality and safety applications
7.1.5 Analysis of exhaled breath during surgery J. Langejuergen, Leibniz University Hannover, Hannover,	A. Itabashi, Tohoku University, Sendai, Japan	7.3.5 Proposal of contact potential promoted oxide semiconductor gas sensors	Saverio De Vito, ENEA Centro Ricerche Portici, Portici, Naples, Italy	Anna Grazia Mignani, Istituto di Fisica Applicata, Sesto Fiorentino, Italy
Germany	12:10 7.2.6 IrO _x and Pt-Ir electrochemical sensors: prospective sensors for pH and glucose continuous monitoring in cell culture YY. Fang, National Taiwan University, Hsinchu County, Taiwan	N. Yamazoe, Kyushu University, Fukuoka, Japan	7.4.6 Invited 7.4.6 Invited New Approaches to Chemical Sensing for Application in Environmental Monitoring: Smart Sensors and Artificial Olfactory Mucosa Julian W. Gardner, University of Warwick, Coventry, UK	
		12:30 - 13:30 Lunch		

		Wednesday, 23.05.2012		
Room Mailand	Room München 1	Room Brüssel	Room München 2	Room Athen
Chemical Sensors based on III-V Semiconductors	Electrochemical Sensors II	Metal Oxide-based Gas Sensors VIII	Nanowire-based Sensors	Optical Absorbance-based Gas Sensors
Chair: Udo Weimar	Chair: Rod Jones	Chair: Nicolae Barsan	Chair: Juan Ramon Morante	Chair: Anna Grazia Mignani
13:30	13:30	13:30	13:30	13:30
8.1.1	8.2.1	8.3.1	8.4.1 Invited	8.5.1
InGaN/GaN nanowire based opto-chemical sensor for	Ionic liquid based electrochemical ethylene sensor for fruit		Hybrid nanofabrication for multifunctional nanowire	High-order mesoporous (HOM) sensors for visual removal
detecting hydrogen and hydrocarbons at low temperature	and vegetable monitoring	nanowire networks: the effect of radial p-n junction	sensor applications	and recognition of toxic metal ions from drinking water
G. Müller, EADS Innovation Works, Munich, Germany	W. Knoben, Holst Centre/imec the Netherlands, AE Eindhoven, Netherlands	HS. Woo, Korea University, Seoul, Korea	Inkyu Park, Korea Advanced Institute of Science and Technology (KAIST), Daejon, Korea	S. El-Safty, National Institute for Materials Science, Ibaraki, Japan
13:50	13:50	13:50	-	13:50
8.1.2	8.2.2	8.3.2		8.5.2
Recording of living cell membrane depolarisation with		Enhanced sensing performance of noxious H ₂ S sensor based		Anomalous gasochromic response behavior in hydrogen
AlGaN/GaN sensor	trace metals in water pollution based on partial least	on flame-spray-made electroactived-Cu/SnO ₂ nanoparticles		sensing with Pt/ WO ₃ film at low temperature range
	squares regression	, ,		
A.Podolska, The University of Western Australia, Crawley,		Ch. Liewhiran, Chiang Mai University, Chiang Mai, Thailand	14:00 8.4.2	S. Okazaki, Yokohama National University, Yokohama,
Australia	H.X. Zhao, Zhejiang University, Hangzhou, China		Gas sensing properties of novel CuO nanowire devices	Japan
			das sensing properties of novel cuo nanowire devices	
			S. Steinhauer, AIT Austrian Institute of Technology GmbH,	
14:10	14:10	14:10	Vienna, Austria	14:10
8.1.3	8.2.3 Invited All Solid State Reference Electrodes	8.3.3		8.5.3
Influence of oxygen impurities on the CO/H ₂ selectivity of	All Solid State Reference Electrodes	UV assisted chemical gas sensing of nanoporous TiO ₂ at low		Colorimetric CO and NO ₂ gas sensors for fire detection
GaN based gas sensors	Agata Michalska, University of Warszawa, Warszawa,	temperature		C. Peter, Fraunhofer IPM, Freiburg, Germany
R. Prasad, Technische Universität Darmstadt, Darmstadt,	Poland	X. Li, Hainan University, Hainan, China	14:20	-c. Peter, Fraumorer IPW, Freiburg, Germany
Germany	. 5.6	X. Li, Hallian Olliversity, Hallian, Chilla	8.4.3	
ocimum,			Nanowire based metal-oxide gas sensors using a novel	
			micro-CVD technology	
14:30		14:30	T. Fischer, University of Cologne, Cologne, Germany	14:30
8.1.4		8.3.4	1. Fischer, University of Cologne, Cologne, Germany	8.5.4
Optical approach for gas detection using III-N nanowires		Improved response characteristics of SnO ₂ film based NO ₂		Fabrication and characterization of MEMS based optical
		gas sensor with nanoscaled metal oxide catalysts		hydrogen sensors
J. Teubert, Justus-Liebig-Universität Gießen, Gießen,	14:40		14:40	
Germany	14.40	A. Sharma, University of Delhi, Delhi, India	8.4.4	K. Kim, University of Ulsan, Ulsan, Republic of Korea
			Enhanced H ₂ S sensing properties of porous SnO ₂	
			nanofibers modified with CuO	
14:50	CANCELLED	14:50		14:50
8.1.5	CANCELLED	8.3.5 Invited	X. He, Chinese Academy of Sciences, Beijing, China	8.5.5
Nitrate-selective gallium nitride transistor-based ion		Gas sensitivity of different metal oxide nanostructured thin		Au nanoparticles dispersed inside porous TiO ₂ thin films:
sensors with low detection limit		films		high performance optical gas sensors through localized
				surface plasmon resonance monitoring
A. Podolska, The University of Western Australia, Crawley,	15:00 8.2.5	Alberto Lamagna, Grupo MEMS Comisión Nacional de	15:00 8.4.5	-
Australia	Detection of Zn ²⁺ ions using a novel chemosensor based on	Energia Atómica, Buenos Aires, Argentina	Enhancement of gas sensing properties by	A. Martucci, Università di Padova, Settore Materiali, Italy
	coumarin Schiff-base derivatives by electrochemical and		functionalization of networked SnO ₂ nanowires with metal	
	-fluorescence spectroscopy		nanoparticles	
15:10	постеления эресполору			15:10
8.1.6	B.B. Narakathu, Western Michigan University, Kalamazoo,		S. Kim, Inha University, Incheon, Korea	8.5.6
Opto-chemical sensor system based on InGaN/GaN quantum dots for pH detection	USA			Graphene photo detector with integrated waveguide biochemical sensors
quantum dots for pri detection				Diodienical Sensors
S. Paul, EADS Innovation Works, Munich, Germany				T. Hwang, Sungkyunkwan University, Suwon, Korea
	15.20 16.00 B	age Builded Faimwell Cossisis C	heir Delf Mane	-
15:30 - 16:00 Room Brüssel - Fairwell Session - Chair: Ralf Moos				